«САНКТ-ПЕТЕРБУРГСКИЙ МОРСКОЙ РЫБОПРОМЫШЛЕННЫЙ КОЛЛЕДЖ» (филиал)

Федерального государственного бюджетного образовательного учреждения высшего образования «КАЛИНИНГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

УТВЕРЖДАЮ

ВрИО Директора

С.П. Сергиенко

«31» августа 2022 года

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

для проведения текущего контроля знаний и промежуточной аттестации по профессиональному модулю

ОП.20₆ ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ПРОИЗВОДСТВЕННЫХ ПРОЦЕССОВ

Для специальности: 35.02.10 «Обработка водных биоресурсов»

Фонд оценочных средств дисциплины **ОП.20в Техническое обеспечение производственных процессов** разработан на основе Федерального государственного образовательного стандарта (далее ФГОС) среднего профессионального образования (далее СПО) по специальности 35.02.10 Обработка водных биоресурсов, утвержденного Приказом Министерства образования и науки РФ от 13.07.2021 г. N 443 и предназначена для реализации Государственных требований к минимуму содержания и уровню подготовки выпускников по специальности:

35.02.10 Обработка водных биоресурсов.

-	_		
Pan	работч	T T X T !! T X T	١.
1 as	Davor	IMMINI	"

Молчанов Ю.С., преподаватель СПбМРК (филиала) ФГБОУ ВО «КГТУ»

Рецензенты:

Антипов Л.И., преподаватель СПбМРК (филиала) ФГБОУ ВО «КГТУ» Арутюнян К.Т., Председатель правления р/к «Балтика»

Рассмотрена на заседании ПЦІ	К (предметной цикловой комиссии) РОВБиПР
Протокол № 01 от «» авгу	уста 2022 г.
Председатель ПЦК:	(Жачкин Д.А.)

СОДЕРЖАНИЕ

1. ПАСПОРТ ФОНДА ОЦЕНОЧНЫХ СРЕДСТВ	4
2. ОЦЕНКА ОСВОЕНИЯ УМЕНИЙ И ЗНАНИЙ ПО ДИСЦИПЛИНЕ	7
3. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ	
ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ	28

1. ПАСПОРТ ФОНДА ОЦЕНОЧНЫХ СРЕДСТВ

Учебной дисциплины ОП.20в Техническое обеспечение производственных процессов

Фонд оценочных средств предназначен для контроля и оценки результатов освоения учебной дисциплины ОП.20в Техническое обеспечение производственных процессов по специальности СПО 35.02.10 Обработка водных биоресурсов.

Контроль и оценка результатов освоения дисциплины осуществляется преподавателем в процессе проведения экспертного наблюдения и оценки в процессе проведения практических занятий, различных видов опроса, выполнения домашних заданий, расчетов, а также выполнения обучающимися индивидуальных заданий и проектов.

Результаты обучения (освоенные умения, усвоенные знания)	Формы и методы контроля и оценки результатов обучения							
1	2							
Умения:								
Пользоваться справочной литературой и материалами Интернета по автоматизации технологических процессов	Эффективное и правильное использование справочной литературы и материалов Интернета. Оценка выполнения практической работы. Контроль выполнения индивидуальных домашних заданий.							
Читать несложные функциональные схемы автоматизации	Правильность чтения функциональных схем автоматизации. Оценка выполнения практических работ. Контроль выполнения индивидуальных домашних заданий.							
Пользоваться средствами автоматизации производственных процессов	Правильность выбора и применения средств автоматизации. Оценка выполнения практической работы. Контроль выполнения индивидуальных домашних заданий.							
Определять с помощью контрольно- измерительных приборов параметры и режимы технологических процессов	Правильность применения контрольно- измерительных приборов. Оценка выполнения практической работы. Контроль выполнения индивидуальных домашних заданий.							
Знания:								
роли и значения автоматизации в промышленности	Опрос; тестирование. Контроль выполнения индивидуальных домашних заданий.							
основных терминов, понятий и определений автоматизации	Опрос; тестирование. Контроль выполнения индивидуальных домашних заданий.							
назначения основных элементов автоматических систем	Опрос; тестирование. Контроль выполнения индивидуальных							

	домашних заданий.						
конструкции и принципа действия основных	Опрос; тестирование.						
контрольно-измерительных приборов	Контроль выполнения индивидуальных						
	домашних заданий.						
основных типов и принципов действия	Опрос; тестирование.						
автоматических регуляторов	Контроль выполнения индивидуальных						
	домашних заданий.						
способов автоматизации различных	Опрос; тестирование.						
технологических процессов	Контроль выполнения индивидуальных						
рыбообрабатывающих производств	домашних заданий.						
После изучения дисциплины - дифференцирован	нный зачет.						

Результатом освоения учебной дисциплины является готовность обучающегося к выполнению основных видов профессиональной деятельности:

Код	Наименование вида деятельности
ВД.01	Производство пищевой продукции из водных биоресурсов
ВД.02	Производство кормовой и технической продукции из водных биоресурсов
ВД.03	Производство кулинарных изделий из водных биоресурсов

и составляющих их профессиональных компетенций, а также общих компетенций, формирующихся в процессе освоения ППССЗ в целом:

- **ОК 1.** Выбирать способы решения задач профессиональной деятельности применительно к различным контекстам;
- **ОК 2.** Использовать современные средства поиска, анализа и интерпретации информации и информационные технологии для выполнения задач профессиональной деятельности;
- **ОК 3.** Планировать и реализовывать собственное профессиональное и личностное развитие, предпринимательскую деятельность в профессиональной сфере, использовать знания по финансовой грамотности в различных жизненных ситуациях;
- **ОК 4.** Эффективно взаимодействовать и работать в коллективе и команде;
- **ОК 5.** Осуществлять устную и письменную коммуникацию на государственном языке Российской Федерации с учетом особенностей социального и культурного контекста;
- **ОК 6.** Проявлять гражданско-патриотическую позицию, демонстрировать осознанное поведение на основе традиционных общечеловеческих ценностей, в том числе с учетом гармонизации межнациональных и межрелигиозных отношений, применять стандарты антикоррупционного поведения;

- **ОК 7.** Содействовать сохранению окружающей среды, ресурсосбережению, применять знания об изменении климата, принципы бережливого производства, эффективно действовать в чрезвычайных ситуациях;
- **ОК 8.** Использовать средства физической культуры для сохранения и укрепления здоровья в процессе профессиональной деятельности и поддержания необходимого уровня физической подготовленности;
- **ОК 9.** Пользоваться профессиональной документацией на государственном и иностранном языках.
- **ПК 1.1.** Планировать, организовывать и вести технологический процесс производства различных видов пищевой продукции из водных биоресурсов
- **ПК 1.2.** Готовить к работе и эксплуатировать технологическое оборудование для производства различных видов пищевой продукции из водных биоресурсов
- **ПК 2.1.** Планировать, организовывать и вести технологический процесс производства кормовой и технической продукции из водных биоресурсов
- **ПК 2.2.** Готовить к работе и эксплуатировать технологическое оборудование для производства кормовой и технической продукции из водных биоресурсов
- **ПК 3.1.** Планировать, организовывать и вести технологический процесс производства кулинарной продукции из водных биоресурсов
- **ПК 3.2.** Готовить к работе и эксплуатировать технологическое оборудование производства кулинарной продукции из водных биоресурсов

Изучение данной дисциплины направлено на достижение общеобразовательных, воспитательных и практических задач, на дальнейшее развитие личностных способностей и дальнейшего профессионального роста выпускника-будущего специалиста.

Формой аттестации по учебной дисциплине является Дифференцированный зачет (в соответствии с учебным планом по специальности 35.02.10 Обработка водных биоресурсов).

Оценка индивидуальных образовательных достижений по результатам текущего и промежуточного контроля производится в соответствии с универсальной шкалой (см. таблицу).

2	,									
Процен	т результативности	Качественная оценка	Качественная оценка индивидуальных образовательных							
(прав	вильных ответов)	достижений								
		Балл (отметка)	Вербальный аналог							
	90-100	5	ОТЛИЧНО							
	80-89	4	ХОРОШО							

70-79	3	УДОВЛЕТВОРИТЕЛЬНО
MEHEE 70	2	НЕУЛОВЛЕТВОРИТЕЛЬНО

2. ОЦЕНКА ОСВОЕНИЯ УМЕНИЙ И ЗНАНИЙ (ТИПОВЫЕ ЗАДАНИЯ) ПО ДИСЦИПЛИНЕ «ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ПРОИЗВОДСТВЕННЫХ ПРОЦЕССОВ»

Типовые задания для оценки освоения учебной дисциплины «Техническое обеспечение производственных процессов»:

Типовые задания по дисциплине «Техническое обеспечение производственных процессов» соответствуют рабочей программе на основе ФГОС СПО. Для проверки качества подготовки будущих специалистов, в фонд оценочных средств включены разные типы заданий, позволяющие проверить большую часть элементов, предусмотренных существующими требованиями к подготовке специалистов среднего звена (далее ППССЗ) "СПбМРК" (филиал) ФГБОУ ВО "КГТУ" по дисциплине «Техническое обеспечение производственных процессов».

Материалы для контроля умений и знаний состоят из: 4 тестов (состоящих из 15 типовых вопросов), и вопросов для текущего контроля в форме устного опроса которые охватывают все дидактические единицы рабочей программы и имеют следующую тематическую структуру:

Тесты по учебной дисциплине «Техническое обеспечение производственных процессов»

Тест 1.

Выберите правильный ответ из предложенных вариантов

- 1. Совокупность правил, необходимых для управления объектом извне, называется:
- а) алгоритмом;
- б) управлением;
- в) функционированием.
- 2. Установку, нуждающуюся в определенных внешних командах для выполнения алгоритма функционирования, называют:
- а) управляющим устройством;
- б) системой автоматического управления;
- в) объектом управления.
- 3. Внешние воздействия, которые не планируются в работе системы, носят случайный характер и затрудняют управление, называют:
- а) управляющими воздействиями;
- б) возмущающими воздействиями;
- в) задающими воздействиями.
- 4. Внутренние воздействия носят название:

- а) управляющими воздействиями;
- б) возмущающими воздействиями;
- в) задающими воздействиями.
- 5. Каждый объект управления для поддержания установленных значений физических величин или их изменения в заданном направлении имеет:
- а) управление;
- б) управляющее устройство;
- в) объект управления.
- 6. Адаптивные системы называют также:
- а) обыкновенные;
- б) несамонастраивающиеся;
- в) самонастраивающиеся.
- 7. САУ, которые в процессе управления не изменяют своей структуры и имеют широкое применение, называют:
- а) обыкновенные;
- б) не самонастраивающиеся;
- в) самонастраивающиеся.
- 8. Элементы автоматики, которые служат для улучшения качества процесса управления, называются:
- а) сравнивающие;
- б) преобразующие;
- в) корректирующие.
- 9. САУ, которые обеспечивают поддержание регулируемой величины на заданном уровне или изменение ее по заданной программе, называются:
- a) CAP
- б) САК
- в) CA3
- г) САБ.

Впишите пропущенное слово

- 10.является основной частью любого первичного преобразователя.
- 11. Необходимостью применения усилителя из-за малой мощности выходного сигнала является недостаток
- 12. Фотоэлементы с..... обладают высокой чувствительностью
- 13.является чувствительным элементом у емкостных преобразователей.
- 4. Для получения большой выдержки времени применяют реле времени.
- 15. Реохорд датчика представляет собой... из ... материала с намотанным на него в один ряд проводом.

Тест 2. Выберите один правильный ответ

- 1. Для улучшения качества процесса управления служат элементы автоматики, которые называются:
- а) корректирующие;
- б) преобразующие;
- в) сравнивающие
- 2. Обеспечивают поддержание регулируемой величины на заданном уровне или изменение ее по заданной программе называются САУ:
- а) САБ
- б) САК
- в) CA3
- г) САР.
- 3. Коэффициент передачи различных элементов, который выражается формулой Хвых/Хвх, называется:
- а) статический;
- б) динамический;
- в) относительный.
- 4. Обратная связь, которая связывает управляемую величину с задающим устройством, называется:
- а) дополнительной;
- б) местной;
- в) главной.
- 5. Основной из главных характеристик элементов автоматики является:
- а) динамическая характеристика;
- б) статическая характеристика;
- в) относительная характеристика.
- 6. Преобразователи, которые преобразуют неэлектрическую энергию входного сигнала в электрическую энергию, значение которой пропорционально значению контролируемого параметра, называются:
- а) параметрические;
- б) генераторные;
- в) потенциометрические.
- 7. Основной частью любого первичного преобразователя является:
- а) чувствительный элемент;
- б) подвижный контакт;
- в) сердечник.

- 8. Для преобразования механических перемещений используют:
- а) индуктивные первичные преобразователи;
- б) потенциометрические преобразователи;
- в) емкостные первичные преобразователи.
- 9. Разновидностью индуктивных преобразователей являются:
- а) генераторные преобразователи;
- б) параметрические преобразователи;
- в) трансформаторные преобразователи.
- 10. Необходимость применения усилителя из-за малой мощности выходного сигнала является одним из недостатков:
- а) индуктивных преобразователей;
- б) емкостных преобразователей;
- в) фотоэлектрических преобразователей.
- 11. Высокой чувствительностью обладают фотоэлементы с:
- а) внешним фотоэффектом;
- б) внутренним фотоэффектом;
- в) запирающим слоем.
- 12. Фотоэлементы типа ЦВ имеют расшифровку:
- а) цинковый, внутренний;
- б) цезиевый, внешний;
- в) цезиевый, вакуумный.
- 13. Для реле времени выдержка времени составляет:
- А) больше 1,0с;
- Б) 0,20 с;
- В) меньше 0,53 с.
- 14. К реле косвенного действия относится:
- A) реле тока РТ-40;
- Б) реле прямого действия;
- В) реле управления.
- 15. Для выполнения алгоритма функционирования установку, нуждающуюся в определенных внешних командах называют ...

Тест 3.

Выберите один правильный ответ.

- 1. Необходимость применения усилителя из-за малой мощности выходного сигнала является одним из недостатков:
- а) индуктивных преобразователей;
- б) емкостных преобразователей;
- в) фотоэлектрических преобразователей.
- 2. Высокой чувствительностью обладают фотоэлементы с:
- а) внешним фотоэффектом;
- б) внутренним фотоэффектом;
- в) запирающим слоем.
- 3. Фотоэлементы типа ЦВ имеют расшифровку:
- а) цинковый, внутренний;
- б) цезиевый, внешний;
- в) цезиевый, вакуумный.
- 4. Чувствительным элементом у емкостных преобразователей является:
- а) конденсатор;
- б) катушка индуктивности;
- в) плунжер.
- 5. Для измерения линейных перемещений используют емкостные преобразователи с:
- а) переменным расстоянием между пластинами;
- б) измеряемой площадью пластин;
- в) изменением диэлектрической проницаемости среды между пластинами.
- 6. Реохорд датчика представляет собой:
- а) катушку индуктивности с магнитопроводом;
- б) спираль из нескольких петель проволоки;
- в) каркас из изоляционного материала с намотанным на него в один ряд проводом.
- 7. Внутренние воздействия носят название:
- а) задающими воздействиями;
- б) возмущающими воздействиями;
- в) управляющими воздействиями.
- 8. Самую простую конструкцию имеет:
- а) герконовое реле;
- б) статическое реле;
- в) электромеханическое реле.

- 9. Выдержка времени для реле времени составляет:
- А) меньше 0,05 с;
- Б) 0,25 с;
- В) больше 1,0 с.
- 10. Основной из главных характеристик элементов автоматики является:
- а) статическая характеристика;
- б) динамическая характеристика;
- в) относительная характеристика.
- 11. Разновидностью индуктивных преобразователей являются:
- а) генераторные преобразователи;
- б) параметрические преобразователи;
- в) трансформаторные преобразователи.
- 12. Реле тока РТ-40 относится к:
- а) реле косвенного действия;
- б) реле прямого действия;
- в) реле управления.
- 13. Для получения большой выдержки времени применяют реле времени:
- А) с использованием конденсатора;
- Б) электронные;
- В) с использованием резистора.
- 14. Совокупность правил, необходимых для управления объектом извне, называется:
- а) алгоритмом;
- б) управлением;
- в) функционированием.

Вставьте пропущенные слова

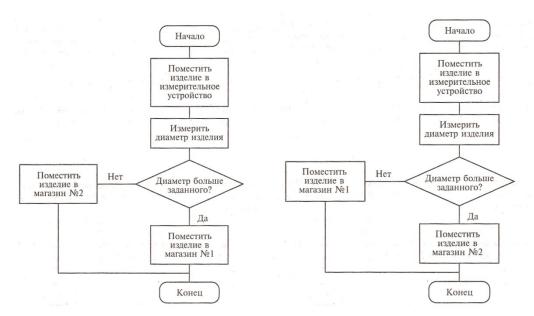
15. К группе вспомогательных устройств относятся: предохранители и автоматические выключатели, ..,

Тест 4.

- 1. Наука, изучающая системы и методы управления машинами, живыми организмами, обществом:
 - 1). Автоматика.
 - 2). Автомеханика.
 - 3). Кибернетика.
 - 4). Электромеханика.
 - 5). Обществознание.

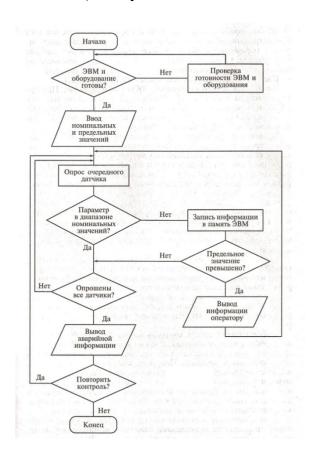
- 2. Раздел кибернетики, изучающий теорию и методы автоматизации производственных процессов:
 - 1). Киборг.
 - 2). Автоматика.
 - 3). Автоматизация.
 - 4). Автомеханизация.
- 3. Совокупность технических средств и методов сбора, обработки, анализа и выдачи информации и воздействия на ТП, которые во взаимодействии с человеком и между собой обеспечивают запланированное протекание технологического процесса:
 - 1). Кибернетическая система управления.
 - 2). Автоматическая система управления.
 - 3). Автоматизированная система управления.
 - 4). Технометрическая система управления.
- 4. Два главных элемента управления полностью автоматизированными технологическими процессами:
 - 1). Руки, ноги.
 - 2). Руки.
 - 3). Датчики.
 - 4). Датчики и исполнительные механизмы.
 - 5). Реле.
 - 6). Приказы и распоряжения.
- 5. Выберите единственно верно составленный вариант алгоритма для приготовления бутерброда из сливочного масла и белого хлеба:
 - 1). Вариант 1.
 - 1. Положите хлеб на стол.
 - 2. Откройте маслёнку.
 - 3. Откройте холодильник.
 - 4. Возьмите сыр.
 - 5. Возьмите нож в руку.
 - 6. Закройте холодильник.
 - 7. Положите нож на стол.
 - 8. Уберите хлеб в хлебницу.
 - 9. Намажьте масло и положите сверху сыр.
 - 10. Уберите нож в стол.
 - 11. Съешьте бутерброд.
 - 12. Уберите со стола.
 - 13. Закройте хлебницу.

2). Вариант 2.

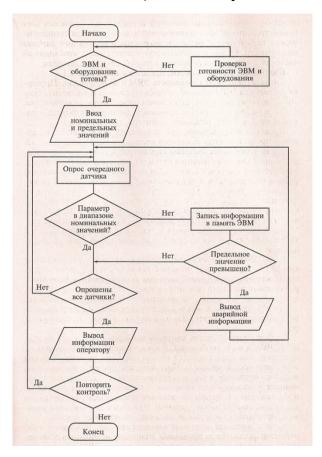

- 1. Откройте хлебницу.
- 2. Возьмите хлеб.
- 3. Закройте хлебницу.
- 4. Положите хлеб на стол.
- 5. Откройте холодильник.
- 6. Возьмите масло.
- 7. Закройте холодильник.
- 8. Положите масло на хлеб.
- 9. Возьмите нож.
- 10. Отрежьте хлеб.
- 11. Отрежьте немного масла.
- 12. Намажьте немного масла на хлеб.
- 13. Положите нож на место.

- 14. Предложите бутерброд маме.
 - 3). Вариант 3.
- 1. Положите хлеб на стол.
- 2. Откройте маслёнку.
- 3. Откройте холодильник.
- 4. Возьмите сыр.
- 5. Возьмите нож в руку.
- 6. Закройте холодильник.
- 7. Положите нож на стол.
- 8. Уберите хлеб в хлебницу.
- 9. Намажьте масло и положите сверху сыр.
- 10. Уберите нож в стол.
- 11. Съешьте бутерброд.
- 12. Уберите со стола.
- 13. Закройте хлебницу.
- 14. Предложите бутерброд маме.

- 14. Съешьте сами бутерброд.
 - 4). Вариант 4.
- 1. Откройте хлебницу.
- 2. Возьмите хлеб.
- 3. Откройте холодильник.
- 4. Положите масло на стол.
- 5. Откройте маслёнку.
- 6. Возьмите масло.
- 7. Закройте холодильник.
- 8. Положите масло на хлеб.
 - 9. Возьмите нож.
- 10. Отрежьте масло.
- 11. Отрежьте немного хлеба.
 - 12. Намажьте масла на хлеб.
- 13. Положите нож на стол.
- 14. Съешьте сами бутерброд.
- 6. На каком из рисунков верно представлены блок-схемы алгоритма для сортировки деталей с ветвлениями:
 - 1. Пока на конвейере есть изделие, выполнять действия:
 - 2. Установить изделие в измерительное устройство.
 - 3. Измерить диаметр изделия.
 - 4. Если диаметр изделия больше заданного, то поместить изделие в магазин N_2 1.
 - 5. Иначе поместить изделие в магазин № 2.
 - 6. Конец ветвления.
 - 7. Конец цикла.


1) Рисунок 1.

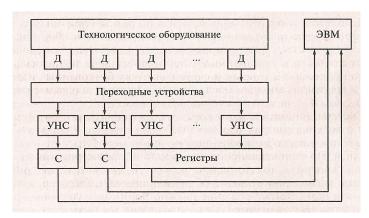
2) Рисунок 2.



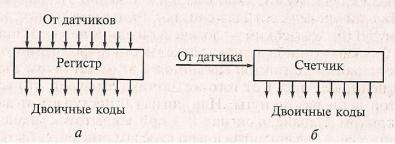
- 7. К аналоговым сигналам относятся сигналы:
- 1). «Включен-выключен».
- 2). «Повернуть заслонку на 41 градус».
- 3). «Переместить движок реостата на 27 мм»
- 4). «Закрыт»
- 5). «Закрыть клапан чуть-чуть».
- 6). «Включен».
- 7). «Переместить рычаг до упора»
- 8). «Включить двигатель чуть-чуть»
- 9). «Увеличить частоту вращения двигателя до 600 оборотов в минуту».
- 8. К Дискретным сигналам относятся сигналы:
- 1). «Включен».
- 2). «Установить деталь в позицию № 4»
- 3). «Открыт-закрыт»
- 4). «Выключен».
- «Установить деталь в позицию №7»
- 6). «Чуть включен».
- 7). «Открыт».
- 8). «Закрыт».
- 9. Автоматические системы подразделяются на три основные типа:
- 1). Системы механического контроля.
- 2). Системы автоматического контроля.
- 3). Системы гидроконтроля.
- 4). Системы автоматического управления.
- 5). Системы автоматического регулирования.
- 6). Системы автоматического торможения.

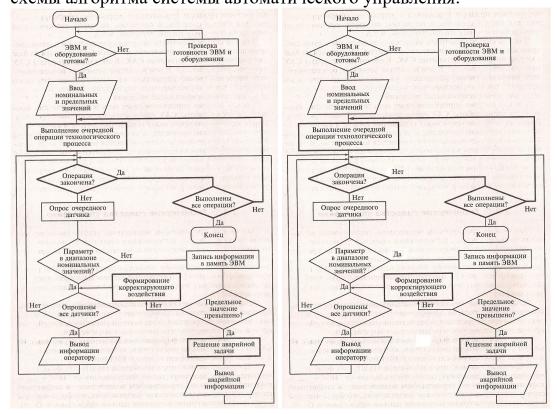
- 10. На каком из рисунков верно представлены блок-схемы алгоритма системы автоматического контроля:
 - 1) Рисунок 1.

2) Рисунок 2.

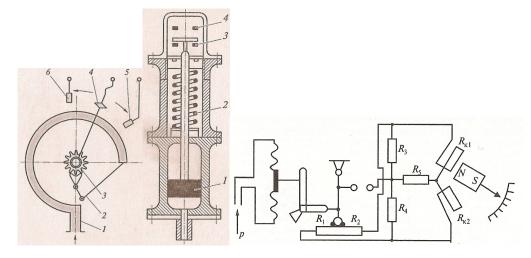


11. На каком из рисунков верно указано отображение структуры обработки аналоговых сигналов системы автоматического контроля:

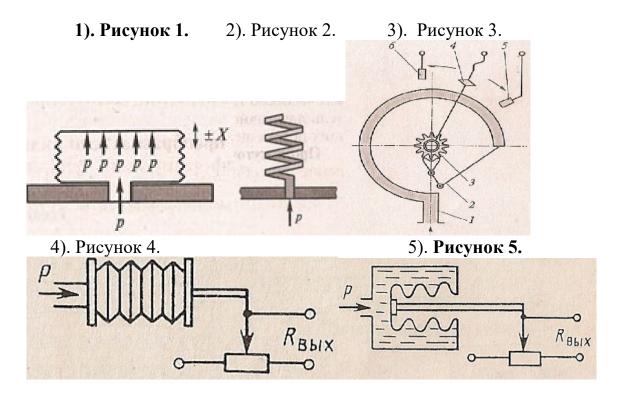

1) Рисунок 1.


2) Рисунок 2.

- 12. Для регистрации и подсчёта каких сигналов созданы устройства, указанные на рисунке а и б:
 - 1). Аналоговых.
 - 2). Цифровых.
 - 3). Дискретных.



13. На каком из рисунков допущена ошибка при составлении блоксхемы алгоритма системы автоматического управления:



1) Рисунок 1.

- 2) Рисунок 2.
- 14. Датчик давления манометрический изображён на рисунке:
 - **1) Рисунок 1.** 2) Рисунок 2. 3) Рисунок 3.

15. Сильфонный датчик давления для жидкостей изображён на рисунке:

2.2. Текущий контроль в форме опроса.

Форма текущего контроля «Опрос» предполагает устный опрос по основным вопросам тем. Устный контроль осуществляется в индивидуальной и фронтальной формах. Обучающимся предлагается ответить на 1 вопрос.

Цель устного индивидуального контроля — выявление знаний, умений и навыков отдельных обучающихся. Дополнительные вопросы при индивидуальном контроле задаются при неполном ответе, если необходимо уточнить детали, проверить глубину знаний или же если у преподавателя возникают проблемы при выставлении отметки.

Устный фронтальный контроль (опрос) — требует серии логически связанных между собой вопросов по небольшому объему материала. При фронтальном опросе от обучающихся преподаватель ждет кратких, лаконичных ответов с места. Обычно он применяется с целью повторения и закрепления учебного материала за короткий промежуток времени.

Критерии оценивания устного опроса:

- -оценка **«отлично»** ставится в том случае, если ответ логически структурирован, содержит полное раскрытие содержания вопроса;
- оценка **«хорошо»** ставится в том случае, если ответ содержит недостаточно полное раскрытие теоретических вопросов;
- -оценка **«удовлетворительно»** ставится в том случае, если ответ содержит поверхностное изложение сути поставленного вопроса;

-оценка **«неудовлетворительно»** ставится в том случае, если студент не может дать ответ на поставленные вопрос.

Раздел 1. Системы автоматизации и элементы автоматических устройств Тема 1.1. Основные сведения о системах автоматизации

Вопросы для контроля и аттестации:

- 1. Что такое автоматизация?
- 2. Какие процессы называются технологическими?
- 3. В чем заключается автоматизация технологических процессов?
- 4. Особенности автоматизации производственных процессов рыбообрабатывающих производств.
- 5. В чем отличие автоматизированной системы управления от автоматической?
- 6. Перечислите главные элементы системы управления.
- 7. Сформулируйте роль вычислительного устройства в системе управления.
- 8. Принципиальные схемы автоматизации. Их назначение и практическое применение

Тема 1.2. Элементы и устройства автоматики

Вопросы для контроля и аттестации:

- 1. Охарактеризуйте алгоритм работы системы автоматического управления.
- 2. Какие отличия появились в алгоритме управления по отношению к алгоритму контроля?
- 3. Назовите технические средства формирования аналоговых воздействий.
- 4. Назовите технические средства формирования дискретных воздействий.
- 5. Что такое датчик?
- 6. Какие датчики называются активными? Назовите их.
- 7. Назовите основные датчики дискретных параметров.
- 8. Какие принципы положены в основу работы датчиков.

Раздел 2. Автоматизированный контроль технологических параметров Тема 2.1. Общие сведения о технологических измерениях и контрольно-измерительных приборах

Вопросы для контроля и аттестации:

Подтема 1. Регистрирующие приборы.

1. Что такое регистрирующие приборы.

- 2. Приведите примеры использования регистрирующих приборов в производстве продукции из водных биоресурсов.
- 3. Основные функции регуляторов и устройств управления.
- 4. Классификация и тенденции развития устройств управления в системах автоматизации.
- 5. Виды исполнительных механизмов и примеры их применения на заводах рыбной отрасли.
- 6. Укажите отличительные особенности регуляторов непрямого действия.

Подтема 2. Измерители. Реле.

- 1. Качество процесса регулирования. Количественные оценки.
- 2. Терморезисторы (проволочный, полупроводниковый).
- 3. Реостатный преобразователь. ДТ-преобразователь.
- 4. Термопара. Принцип работы, характеристика.
- 5. Емкостный преобразователь.
- 6. Мостовые измерительные системы (уравновешенный, неуравновешенный мост)
- 7. Компенсационная измерительная схема.
- 8. Схемы для измерения емкости.
- 9. Электрический усилитель. Электронный, ламповый, полупроводниковый.
- 10. Магнитный усилитель.
- 11. Реле как элемент системы. Реле неэлектрических величин.
- 12. Электрическое реле. Реле электромагнитное, поляризованное.
- 13. Магнитный пускатель. Устройство, применение.
- 14. Структурные схемы систем контроля: местные, дистанционные, телеметрические.

Подтема 3. Устройство, принцип действия и схемы включения датчиков и регуляторов.

- 1. Устройство, принцип действия, схемы включения датчиков и регуляторов.
- 2. Устройство, принцип действия, схемы включения регуляторов прямого действия.
- 3. Устройство, принцип действия, схемы включения приборов пневматической агрегатной системы.
- 4. Устройство, принцип действия, схемы включения электрических регуляторов.
- 5. Устройство, принцип действия, схемы включения гидравлических регуляторов.
- 6. Опишите элементы и принцип действия, особенности пневматических регуляторов.

- 7. Дайте сравнительную характеристику носителей энергии регуляторов.
- 8. Регуляторы П-, И- и ПИ –типов.
- 9. Определите особенности ПИД- закона регулирования.
- 10. Как реализуются нелинейные законы регулирования.

Тема 2.2. Измерение и контроль температуры

Вопросы для контроля и аттестации:

- 1. Приборы для измерения температуры.
- 2. Пирометры излучения.
- 3. Приборы для измерения температуры. Измерительные мосты.
- 4. Приборы для измерения температуры. Логометры.
- 5. Приборы для измерения температуры. Термометры сопротивления.
- 6. Приборы для измерения температуры. Термоэлектрические пирометры.
- 7. Манометрические термометры.
- 8. Особенности устройства и действия сигнализирующих манометрических термометров.

Тема 2.3. Измерение и контроль давления и разрежения

Вопросы для контроля и аттестации:

- 1. Жидкостно-механические приборы для измерения давления.
- 2. Устройство и принцип действия поплавковых и колокольных приборов для измерения давления.
- 3. Деформационные приборы для измерения давления.
- 4. Устройство и принцип действия пружинных, сильфонных, мембранных приборов для измерения давления.
- 5. Дифференциальные манометры и расходомеры постоянного перепада.

Tема 2.4. Измерение и контроль уровня, количества и расхода вещества и других параметров

Вопросы для контроля и аттестации:

Подтема 1. Датчики расхода.

- 1. Опишите основные принципы построения датчиков расхода жидкости и газообразных веществ
- 2. Устройство, принцип действия поплавковых и гидростатических уровнемеров.
- 3. Устройство, принцип действия электронных сигнализаторов уровня
- 4. Опишите устройство и принцип действия приборов для контроля заполнения бункеров сыпучими материалами.

- 5. Опишите устройство и принцип действия приборов для измерения количества сыпучих материалов.
- 6. Скоростные и объемные счетчики

Подтема 2. Дозаторы.

- 1. Классификация автоматических приборов по основным признакам.
- 2. Классификация дозаторов.
- 3. Объемные дозаторы. Основные виды, область применения.
- 4. Весовые дозаторы. Основные виды, область применения.
- 5. Измерительные устройства весовых дозаторов.
- 6. Дистанционный метод измерения веса материала.

Тема 2.5. Измерение и контроль состава и свойств вещества

Вопросы для контроля и аттестации:

- 1. Классификация приборов для измерения влажности.
- 2. Деформационные и электрические гигрометры.
- 3. Устройство и принцип работы психрометров.
- 4. Аспирационные и автоматические психрометры.
- 5. Электрические измерители влажности рыбной муки.
- 6. Классификация, конструкция и принцип действия приборов для измерения плотности, вязкости
- 7. Классификация, конструкция и принцип действия анализаторов состава жидкостей и газов.
- 8. Особенности монтажа и эксплуатации влагомеров

Раздел 3. Автоматическое регулирование и управление производственными процессами

Тема 3.1. Классификация и основные понятия автоматических систем регулирования

Вопросы для контроля и аттестации:

- 1. Какие характеристики АСР исследуются в динамическом режиме.
- 2. Какие показатели определяют качество динамических свойств АСР.
- 3. Покажите признаки классификации АСР.
- 4. Назначение математической модели динамики АСР.
- 5. Методы линеаризации моделей нелинейных АСР
- 6. Автоматика и автоматизация производственных процессов
- 7. Критерии устойчивости АСР.
- 8. Какие виды оценок применяют для анализа качества регулирования.

Тема 3.2. Автоматические регуляторы и регулирующие устройства

Вопросы для контроля и аттестации:

- 1. Развернутая функциональная схема электрического автоматического устройства с И-законом регулирования.
- 2. Развернутая функциональная схема электрического автоматического устройства с П-законом регулирования.
- 3. Развернутая функциональная схема электрического автоматического устройства с ПИ-законом регулирования.
- 4. Задачи статического анализа САР. Равновесные характеристики. Виды, примеры. Задачи динамического анализа САР.
- 5. Уравнение динамической характеристики в традиционной и операторной форме. Понятие передаточной функции.
- 6. Методы определения результирующей равновесной характеристики и передаточной функции для соединений звеньев (последовательное, параллельное, охват звеньев обратной связью).
- 7. И-регулятор. Уравнение закона регулирования, характеристики, свойства, пример.
- 8. П-регулятор. Уравнение закона регулирования, характеристики, свойства, пример.
- 9. ПИ-регулятор. Уравнение закона регулирования, характеристики, свойства.
- 10. Сравнение переходных процессов САР с применением П-, И-, ПИ-регуляторов.

Тема 3.3. Принципы составления схем автоматизации

Вопросы для контроля и аттестации:

- 1. Составьте классификационную схему системы автоматизации.
- 2. Структурная схема автоматизации.
- 3. Структурные схемы автоматизации технологических процессов производства мороженой продукции.
- 4. Структурные схемы автоматизации технологических процессов в солеконцентраторах.
- 5. Пример структурных схем автоматизации технологических процессов измельчения кормовой муки.
- 6. Структурные схемы автоматизации технологических процессов обжарки.
- 7. Структурные схемы автоматизации технологических процессов сушки.
- 8. Структурная схема автоматизации производства стерилизованных консервов.

- 9. Технические средства систем автоматизации, область использования, виды и способы обработки информации о состоянии технологического процесса.
- 10. Принципиальные схемы автоматизации. Их назначение и практическое применение.

Тема 3.4. Системы дистанционного управления, автоматической защиты и блокировки

Вопросы для контроля и аттестации:

- 1. Назначение систем дистанционного контроля и управления,
- 2. Принципиальные схемы дистанционного управления.
- 3. Системы телеизмерения телеуправления, телесигнализации.
- 4. Диспетчерское управление производством.
- 5. Элементы систем автоматического контроля и их основные характеристики.
- 6. Классификация систем автоматической защиты и блокировки.

Раздел 4. Автоматизация производственных процессов рыбообрабатывающих производств.

Тема 4.1. Автоматизация консервного производства

Вопросы для контроля и аттестации:

- 1. Перечислите основные стадии создания АСУ ТП.
- 2. Укажите области использования и особенности построения САР «Расхода, давления, уровня и температуры».
- 3. Какие основные функциональные подсистемы входят в САУ «Дозирование» в рыбной промышленности.
- 4. Особенности построения системы автоматизации коптильной установки при производстве консервов «Шпроты в масле».
- 5. Какие подсистемы регулирования широко используются при управлении холодильной установкой.
- 6. Какие подсистемы регулирования используются при управлении автоклавами.

Тема 4.2. Автоматизация рыбомучного производства

Вопросы для контроля и аттестации:

- 1. Трехуровневая структура регулирования жиромучных установок рыбокомбинатов.
- 2. Термопреобразователь и другие составляющие системы САР процесса варки в жиромучной установке.
- 3. САР температуры процесса окончательной сушки в производстве жиромучной продукции. С

- 4. Контроль давления пара в зарубашечном пространстве жиромучной установки. Измерение давления пара и бульона.
- 5. САР насоса перекачивания подпрессового бульона.
- 6. Опишите, что является важнейшим параметром, характеризующим процесс сушки.

Фонд оценочных средств для проведения текущей аттестации:

Тест 1.

№ задания	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ответ	a	В	б	В	б	б	a	б	В	б	Внешним фотоэффектом	a	a	a	каркас, изоляционного

Тест 2.

№ задания	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ответ	a	Γ	a	В	б	б	a	б	В	б	a	a	a	a	объектом управления

Тест 3.

10015.															
№ задания	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ответ	б	a	a	a	б	В	a	a	В	a	В	a	б	a	резисторы, конденсаторы, аппаратура сигнализации.

Тест 4.

№ задания	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ответ	3	2	2,3	4	2	1	2,3,5,7,9	1,4,7,8	2,4,5	2	1	2,3	2	1	15

Использование универсальной шкалы для оценки индивидуальных образовательных достижений по результатам текущего контроля в виде тестирования производится следующим образом (см. таблицу).

Процент результативности	Качественная оценка индивидуальных образовательных	
(правильных ответов)	достижений	
	Балл (отметка)	Вербальный аналог
90-100	5	ОТЛИЧНО
80-89	4	ХОРОШО
70-79	3	УДОВЛЕТВОРИТЕЛЬНО
MEHEE 70	2	НЕУДОВЛЕТВОРИТЕЛЬНО

3. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

3.1 Задания для проведения дифференцированного зачета

Задание для зачета включает в себя два теоретических вопроса.

Вопросы для дифференцированного зачета по учебной дисциплине «Основы технических знаний»

- 1. Понятие автоматизации. Этапы развития автоматизации.
- 2. Структурная схема системы управления технологическими процессами.
- 3. Понятие систем автоматического контроля регулирования, управления процессом.
- 4. Понятие ТОУ (Технологический объект управления), классификация, характеристика.
- 5. Характеристика элементов Комплекса технологических средств (КТС), их назначение.
- 6. Понятие измерений, виды измерений.
- 7. Понятие точности измерений. Виды погрешностей измерений
- 8. Определение и классификация средств измерений. Назначение измерительного преобразователя.
- 9. Классификация приборов для измерения.
- 10. Деформационные манометры. Принцип действия. Измерительные схемы. Характеристики.
- 11. Жидкостные манометры. Принцип действия. Характеристика.
- 12. Электрические манометры. Принцип действия. Характеристика.
- 13. Грузопоршневые манометры. Принцип действия. Характеристика.
- 14. Пневматическая система дистанционной передачи.
- 15. Электрическая система дистанционной информации.
- 16. Классификация расходомеров и счетчиков количества вещества.
- 17. Расходомеры переменного перепада давления.
- 18. Расходомеры постоянного перепада давления (обтекания).
- 19. Бесконтактные расходомеры.
- 20. Электромагнитные расходомеры.
- 21. Ультразвуковые расходомеры.
- 22. Счетчики жидкостей и газов объемные.
- 23. Счетчики жидкости скоростные.
- 24. Классификация уровнемеров. Назначение, область применения.
- 25. Уровнемеры поплавковые и буйковые. Конструкции, принцип действия, назначение.
- 26. Уровнемеры гидростатические. Конструкции, принцип действия, назначение.
- 27. Уровнемеры электрические. Конструкции, принцип действия, назначение.
- 28. Уровнемеры волновые (локационные) и радиоизотопные. Конструкции, принцип действия, назначение.
- 29. Классификация приборов контроля температуры. Характеристика, назначение, область применения.
- 30. Термометры расширения. Конструкции, принцип действия, назначение.
- 31. Манометрические термометры. Конструкции, принцип действия, назначение.
- 32. Термометры сопротивления и их вторичные приборы: логометры и мосты. Измерительные схемы, принцип работы, характеристики.

- 33. Термоэлектрические преобразователи и их вторичные приборы: милливольтметры и потенциометры. Измерительные схемы, принцип работы, назначение, характеристики.
- 34. Хроматографы, основные узлы, принцип работы, суть метода хроматографии, назначение, измерительная схема.
- 35. Газоанализаторы. Конструкции, принцип действия, назначение.
- 36. рН-метры. Основные узлы, принцип действия, назначение.
- 37. Автоматические регуляторы.
- 38. Позиционные регуляторы.
- 39. Пропорциональные регуляторы.
- 40. Пропорционально-интегральные регуляторы.
- 41. Исполнительные устройства. Классификация. Назначение основных узлов.
- 42. Пневматический регулирующий клапан. Конструкция, назначение, работа.
- 43. Переходные характеристики САР. Понятие виды.
- 44. Свойства ТОУ (Технологических объектов управления): устойчивость, самовыравнивание, запаздывание.
- 45. Характеристика одноконтурных замкнутых и разомкнутых САР.
- 46. Многоконтурные САР. Классификация, назначение, определение, анализ качества регулирования.
- 47. Основы проектирования САР. Принятые правила проектирования, условные обозначения.
- 48. Выполнение САР температуры, расхода, давления, уровня одноконтурных и многоконтурных.
- 49. Разработка системы управления. План основные положения.
- 50. Обоснование выбора параметров регулирования, контроля, сигнализации.
- 51. Обоснование выбора средств автоматизации. Основные правила.
- 52. Описание работ выбранных систем САР.
- 53. Автоматизация непрерывного процесса (теплового, массообменного и др.). Варианты регулирования параметров.
- 54. Автоматизация дискретного процесса (вулканизации, формования и др.). Варианты регулирования параметров.
- 55. Нормирующие преобразователи ТЭП и ТС. Назначение, измерительная схема, работа.
- 56. Электропневмо- и пневмоэлектропреобразователи. Назначение, измерительная схема. Работа.