«САНКТ-ПЕТЕРБУРГСКИЙ МОРСКОЙ РЫБОПРОМЫШЛЕННЫЙ КОЛЛЕДЖ» (филиал)

Федерального государственного бюджетного образовательного учреждения высшего образования «КАЛИНИНГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

УТВЕРЖДАЮ

ВрИО Директора

С.П. Сергиенко

«31» августа 2022 года

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

для проведения текущего контроля знаний и промежуточной аттестации по учебной дисциплине

МАТЕМАТИКА

Для специальности: 26.02.03 СУДОВОЖДЕНИЕ

Санкт-Петербург 2022 г.

Фонд оценочных средств учебной дисциплины разработана на основе Федерального
государственного образовательного стандарта среднего профессионального образования, и
предназначена для реализации Государственных требований к минимуму содержания и
уровню подготовки выпускников по специальности: : 26.02.03 СУДОВОЖДЕНИЕ

Остапенко О.Н., преподаватель СПбМРК (филиала) ФГБОУ ВО «КГТУ».

Рецензенты:

Ульянова О.Н., преподаватель СПб МРК (филиала) ФГБОУ ВО «КГТУ». Васильева М.В. , преподаватель математики высшей квал.категории ГБОУ СОШ № 191 с угл. изучением иностранных языков Красногвардейского р-на СПб

Рассмотрена на заседании ПЦІ	К (предметной цик	повой комиссии)
Протокол №01 от «» авгу	ста 2022 г.	
Председатель ППК:	/	/

СОДЕРЖАНИЕ

1. ПАСПОРТ ФОНДА ОЦЕНОЧНЫХ СРЕДСТВ	4
2. ОЦЕНКА ОСВОЕНИЯ УМЕНИЙ И ЗНАНИЙ ПО ДИСЦИПЛИНЕ	7
3. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ	
ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ	4

1. ПАСПОРТ ФОНДА ОЦЕНОЧНЫХ СРЕДСТВ

1.1. Область применения фонда оценочных средств

Фонд оценочных средств, предназначен для оценки результатов освоения программы учебной дисциплины «Математика».

Форма аттестации -

Дифференцированный зачет (в соответствии с учебным планом по специальности 26.02.05 Эксплуатация судовых энергетических установок).

Форма проведения аттестации -

Дифференцированный зачет

Компетенции выпускника как совокупный ожидаемый результат образования по завершению освоения данной дисциплины:

общие компетенции:

- ОК 1. Понимать сущность и социальную значимость своей будущей профессии, проявлять к ней устойчивый интерес.
- OК 2. Организовывать собственную деятельность, определять методы и способы выполнения профессиональных задач, оценивать их эффективность и качество.
- ОК 3. Решать проблемы, оценивать риски и принимать решения в нестандартных ситуациях.
- ОК 4. Осуществлять поиск, анализ и оценку информации, необходимой для постановки и решения профессиональных задач, профессионального и личностного развития.
- OK 5. Использовать информационно-коммуникационные технологии для совершенствования профессиональной деятельности.
- OК 6. Работать в коллективе и команде, обеспечивать ее сплочение, эффективно общаться с коллегами, руководством, потребителями.
- ОК 7. Ставить цели, мотивировать деятельность подчиненных, организовывать и контролировать их работу с принятием на себя ответственности за результат выполнения заданий.
- ОК 8. Самостоятельно определять задачи профессионального и личностного развития, заниматься самообразованием, осознанно планировать повышение квалификации.
- ОК 9. Быть готовым к смене технологий в профессиональной деятельности.
- OК 10. Владеть письменной и устной коммуникацией на государственном и иностранном языке.

профессиональными компетенциями:

- ПК 1.1. Обеспечивать техническую эксплуатацию главных энергетических установок судна, вспомогательных механизмов и связанных с ними систем управления.
- ПК 1.3. Выполнять техническое обслуживание и ремонт судового оборудования.
- ПК 1.4. Осуществлять выбор оборудования, элементов и систем оборудования для замены в процессе эксплуатации судов.
 - ПК 3.2. Руководить работой структурного подразделения.
- ПК 3.3. Анализировать процесс и результаты деятельности структурного подразделения.

Контроль и оценка результатов освоения дисциплины осуществляется преподавателем в процессе проведения устного опроса, практических работ, графических работ, самостоятельных и домашних работ, тестирования по изучаемым темам, выполнения обучающимися заданий аттестационного текущего контроля успеваемости.

Общие компетенции (ОК) и профессиональные компетенции (ПК)	Результаты обучения (освоенные умения, усвоенные знания)	Формы и методы контроля и оценки результатов обучения
	Умения:	
OK.1 – OK.10	применять математические методы дифференциального и интегрального исчисления для решения профессиональных задач; применять основные положения аналитической геометрии и векторной алгебры в профессиональной деятельности; использовать приемы и методы математического синтеза и анализа в различных профессиональных ситуациях.	Оценка качества выполнения практических работ. Контроль за выполнением самостоятельной работы обучающимися.
OK.1 – OK.10	умение решать вероятностные и статистические задачи, применять основные положения теории вероятностей и математической статистики в профессиональной деятельности;	Оценка качества выполнения практических работ. Контроль за выполнением самостоятельной работы обучающимися.
OK.1 – OK.10	использовать приёмы и методы математического синтеза и анализа в различных	Оценка качества выполнения практических работ. Контроль за выполнением

	профессиональных ситуациях.	самостоятельной работы обучающимися.
	Знания:	
ПК 1.1. ПК 1.3. ПК 1.4. ПК 3.2. ПК 3.3.	основные понятия и методы математическо-логического синтеза и анализа логических устройств; основные положения аналитической геометрии и векторной алгебры решать прикладные электротехнические задачи методом комплексных чисел	Опрос, оценка качества выполнения практических работ. Изложение основных положений математического анализа, основных понятий и методов математическо-логического синтеза.
		Дифференцированный зачет

2. ОЦЕНКА ОСВОЕНИЯ УМЕНИЙ И ЗНАНИЙ ПО ДИСЦИПЛИНЕ

2.1. Текущий контроль при выполнении практических работ:

Перечень практических занятий:

Практическое занятие № 1. Применение дифференциала функции к приближенным вычислениям

Практическое занятие № 2. Угол между 2-мя кривыми. Уравнения касательной и нормали к кривой.

Практическое занятие № 3. Нахождение неопределенных интегралов.

Практическое занятие № 4. Вычисление определенных интегралов

Практическое занятие № 5. Применение производной к решению практических задач

Практическое занятие № 6. Применение интеграла к решению практических задач

Практическое занятие № 7. Решение однородных обыкновенных дифференциальных уравнений первого порядка

Практическое занятие № 8. Решение линейных обыкновенных дифференциальных уравнений первого порядка

Практическое занятие № 9. Действия над комплексными числами. Применение метода комплексных чисел для решения прикладных задач

Практическое занятие № 10. Декартовые и полярные системы координат

Практическое занятие № 11. Деление отрезка в заданном отношении. Метод координат

Практическое занятие № 12. Геометрический смысл векторного произведения

Практическое занятие № 13. Приемы решения определителей

Практическое занятие № 14. Решение задач практической направленности

Практическое занятие № 15. Метод Крамера

	T	
Номер и наименование		Результаты обучения
темы	Методы демонстрации	(освоенные умения, усвоенные
TCWBI		знания), компетенции
1.1. Дифференциальное	ПЗ № 1. Применение	Демонстрировать умения:
и интегральное	дифференциала функции к	- Нахождение производной функции
исчисление	Приближенным	- Нахождение производных высших
	вычислениям	порядков
	ПЗ № 2 Угол между 2-мя	- Нахождение неопределенных
	кривыми . Уравнения	интегралов
	касательной и нормали к	- Вычисление определенных
	кривой.	интегралов
	ПЗ № 3 Нахождение	- Нахождение частных производных
	неопределенных интегралов.	
	ПЗ № 4 Вычисление	
	определенных интегралов	
	ПЗ № 5 Применение	
	производной к решению	
	практических задач	
	ПЗ № 6 Применение	
	интеграла к решению	
	практических задач	
1.4 Обыкновенные	ПЗ № 7 Решение однородных	Демонстрировать умения:
дифференциальные	обыкновенных	- Решение дифференциальных
уравнения	дифференциальных	уравнений первого и второго порядка
	уравнений первого порядка	

	ПЗ № 8 Решение линейных	
	обыкновенных	
	дифференциальных	
	уравнений первого порядка	
1.5 Комплексные	ПЗ № 9 Действия над	Знать:
числа	комплексными числами.	- способы графического
	Применение метода	представления комплексного числа;
	комплексных чисел для	- показательную форму
	решения прикладных задач	комплексного числа.
		Демонстрировать умения:
		- выполнения действий с
		комплексными числами;
		- решения прикладных задач методом
		комплексных чисел.
2.1. Векторы и действия	ПЗ № 10 Декартовые и	Демонстрировать умения:
над ними	полярные системы	- перевода координат из одной
	координат	координатной системы в другую
	ПЗ № 11 Деление отрезка в	- применять положения векторной
	заданном отношении. Метод	алгебры для решения практических
	координат	задач
	ПЗ № 12 Геометрический	
	смысл векторного	
	произведения	
	ПЗ № 13 Приемы решения	
	определителей	
	ПЗ № 14 Признаки	
	перпендикулярности,	
	коллинеарности и	
	компланарности векторов	
	ПЗ № 15 Решение задач	
	практической	
2.2 D	направленности	п
2.2 Решение систем	ПЗ № 16 Метод Крамера	Демонстрировать умения:
уравнений		- решать системы уравнений

2.2 Текущий контроль при выполнении самостоятельных работ

- 1. Самостоятельная практическая работа № 1. Тема «Производная и ее свойства» время на выполнение 90 мин.
- 2. Самостоятельная практическая работа № 2. Тема «Неопределепнный интеграл» время на выполнение 90 мин.
- 3. Самостоятельная практическая работа № 3. Тема «Частные производные» время на выполнение 20 мин.
- 4. Самостоятельная практическая работа № 4. Тема «Вычисление определенных интегралов, геометрические приложения определенного интеграла» время на выполнение 45 мин.
- 5. Самостоятельная практическая работа № 5. Тема «Комплексные числа: их алгебраическая и тригонометрическая формы» время на выполнение 20 мин.
- 6. Самостоятельная практическая работа № 6. Тема «Решение дифференциальных уравнений» время на выполнение 90 мин.

- 7. Самостоятельная практическая работа № 7. Тема: «Векторы и действия над ними» время на выполнение 90 мин.
- 8. Самостоятельная практическая работа № 8. Тема: «Решение систем уравнений» время на выполнение 20 мин.

2.2.1. Самостоятельная практическая работа № **2.** Тема «Производная и ее свойства» - время на выполнение 90 мин.

Вариант – 1

1. Найти производную функции при данном значении аргумента:

$$f(x) = 3x + 5 - \frac{2}{\sqrt{x}} + \frac{3}{\sqrt[3]{x^2}} - \frac{4}{x}, f'(1).$$

2. Найти производную функции при данном значении аргумента:

$$f(x) = (x+1)\sqrt{x^2-1}, f'(\sqrt{2}).$$

3. Найти производную функции при данном значении аргумента:

$$f(z) = \frac{\sqrt{z^2 + 1}}{z}, f'(\sqrt{3}).$$

4. Составить уравнение нормали к данной параболе в точке с данной абсциссой.

$$v = x^2 + 6x + 8, x = -2.$$

5. Точка движется прямолинейно по данному закону $s = t^3 - 2t^2 + 1$, t = 4. Найти ускорение точки в данный момент времени (t в $ce\kappa$, s в M).

Bариант -2

1. Найти производную функции при данном значении аргумента:

$$f(x) = 2x^2 \sqrt{x} - 4x + 1 + \frac{3}{\sqrt[3]{x}} + \frac{1}{x}, f'(1).$$

2. Найти производную функции при данном значении аргумента:

$$f(x) = (x-1)\sqrt{x^2-1}, f'(\sqrt{2}).$$

3. Найти производную функции при данном значении аргумента:

$$f(x) = \frac{\sqrt{x^2 - 1}}{x} f'(\sqrt{2}).$$

4. Составить уравнение нормали к данной параболе в точке с данной абсциссой.

$$y = x^2 + 2x - 8, x = 2.$$

5. Точка движется прямолинейно по данному закону $s = t^3 + t^2 + 3$, t = 3. Найти ускорение точки в данный момент времени (t в $ce\kappa$, s в M)

Вариант – 3

1. Найти производную функции при данном значении аргумента:

$$f(x) = 3x^{2}\sqrt[3]{x^{2}} + 2x - 3 + \frac{2}{x} + \frac{4}{x\sqrt{x}}, f'(1).$$

2. Найти производную функции при данном значении аргумента:

$$f(z) = (z+1)^2 \sqrt{z^2-1}, f'(\sqrt{2}).$$

3. Найти производную функции при данном значении аргумента:

$$f(x) = \frac{x}{\sqrt{x^2 + 1}}, f'(\sqrt{3}).$$

4. Составить уравнение нормали к данной параболе в точке с данной абсциссой.

$$y = x^2 - 6x + 8, x = 2.$$

5. Точка движется прямолинейно по данному закону $s = 2t^3 - 2t^2 - 4$, t = 3. Найти ускорение точки в данный момент времени (t в $ce\kappa$, s в m).

Вариант – 4

1. Найти производную функции при данном значении аргумента:

$$f(x) = 4x^2 \sqrt{x} - 3x + 2 + \frac{6}{x^3 \sqrt{x^2}} - \frac{2}{x^2}, f'(1).$$

2. Найти производную функции при данном значении аргумента:

$$f(x) = (x-1)^2 \sqrt{x^2-1}, f'(\sqrt{2}).$$

3. Найти производную функции при данном значении аргумента:

$$f(u) = \frac{u}{\sqrt{u^2 - 1}}, f'(\sqrt{2}).$$

4. Составить уравнение нормали к данной параболе в точке с данной абсциссой.

$$y = 2x^2 - 12x + 20, x = 4.$$

5. Точка движется прямолинейно по данному закону $s = 2t^3 - t^2 + 4$, t = 3. Найти ускорение точки в данный момент времени (t в $ce\kappa$, s в M).

Вариант – 5

1. Найти производную функции при данном значении аргумента:

$$f(x) = 3x \cdot \sqrt[3]{x} - x + 1 + \frac{1}{x} + \frac{2}{x^2 \sqrt{x}}, f'(1).$$

2. Найти производную функции при данном значении аргумента:

$$f(t) = (t+1)\sqrt{t^2+1}, f'(1).$$

3. Найти производную функции при данном значении аргумента:

$$f(z) = \frac{z}{(z^2 - 1)^2}, f'(\sqrt{3}).$$

4. Составить уравнение нормали к данной параболе в точке с данной абсциссой.

$$y = 2x^2 - 12x + 16, x = 5.$$

5. Точка движется прямолинейно по данному закону $s = t^3 - 3t^2 - 3$, t = 4. Найти ускорение точки в данный момент времени (t в $ce\kappa$, s в m).

Вариант – 6

1. Найти производную функции при данном значении аргумента:

$$f(x) = 3x^2 \cdot \sqrt[3]{x^2} - 3x + 5 + \frac{2}{\sqrt{x}} + \frac{1}{x}, f'(1).$$

2. Найти производную функции при данном значении аргумента:

$$f(z) = z\sqrt{z^2 + 1}, f'(\sqrt{3}).$$

3. Найти производную функции при данном значении аргумента:

$$f(x) = \frac{6\sqrt{x^2 + 1}}{x}, f'(2\sqrt{2}).$$

4. Найти острый угол между двумя данными параболами в точке их пересечения, имеющей положительную абсциссу.

$$y = x^2$$
 и $y = 2 - x^2$.

5. Точка движется прямолинейно по данному закону $s = t^3 + t^2 + 1$, t = 3. Найти ускорение точки в данный момент времени (t в $ce\kappa$, s в m).

Вариант – 7

1. Найти производную функции при данном значении аргумента:

$$f(x) = 4x^{2}\sqrt{x} - 4x + 2 + \frac{3}{2 \cdot \sqrt[3]{x^{2}}} + \frac{3}{x}, f'(1).$$

2. Найти производную функции при данном значении аргумента:

$$f(u) = (u^2 + 1)\sqrt{u^2 + 1}, f'(\sqrt{3}).$$

3. Найти производную функции при данном значении аргумента:

$$f(x) = \frac{4x}{\sqrt{x^2 - 1}}, f'(\sqrt{5}).$$

4. Найти острый угол между двумя данными параболами в точке их пересечения, имеющей положительную абсциссу.

$$y = x^2$$
 и $y = 8 - x^2$.

5. Точка движется прямолинейно по данному закону $s = t^3 - t^2 + 3$, t = 5. Найти ускорение точки в данный момент времени (t в *сек*, s в *м*).

Вариант - 8

1. Найти производную функции при данном значении аргумента:

$$f(x) = 3x^2 \cdot \sqrt[3]{x^2} - 2x + 1 - \frac{8}{\sqrt{x}} + \frac{2}{x}, f'(1).$$

2. Найти производную функции при данном значении аргумента:

$$f(z) = (z^2 - 1)\sqrt{z^2 - 1}, f'(\sqrt{2}).$$

3. Найти производную функции при данном значении аргумента:

$$f(x) = \frac{\sqrt{x^2 - 1}}{x}, f'(\sqrt{5}).$$

4. Найти острый угол между двумя данными параболами в точке их пересечения, имеющей положительную абсциссу.

$$y = 2x^2$$
 и $y = x^2 + 1$.

5. Точка движется прямолинейно по данному закону $s = 2t^3 - t^2 + 4$, t = 3. Найти ускорение точки в данный момент времени (t в $ce\kappa$, s в M).

Вариант – 9

1. Найти производную функции при данном значении аргумента:

$$f(x) = 4x^2 \cdot \sqrt{x} - x + 4 - \frac{3}{2\sqrt[3]{x^2}} + \frac{3}{x}, f'(1).$$

2 Найти производную функции при данном значении аргумента:

$$f(u) = (u^3 + 1)^3, f'(1).$$

3. Найти производную функции при данном значении аргумента:

$$f(x) = \frac{9x}{\sqrt{x^2 + 1}}, f'(2\sqrt{2}).$$

4. Найти острый угол между двумя данными параболами в точке их пересечения, имеющей положительную абсциссу.

$$y = -3x^2$$
 и $y = x^2 - 4$.

5. Точка движется прямолинейно по данному закону $s = 2t^3 - 2t^2 - 4$, t = 3. Найти ускорение точки в данный момент времени (t в $ce\kappa$, s в m).

Вариант - 10

1. Найти производные функций при данном значении аргумента:

$$f(x) = 3x^3 \cdot \sqrt[3]{x} - 2x + 2 + \frac{2}{\sqrt{x}} + \frac{2}{x}f'(1).$$

2. Найти производные функций при данном значении аргумента:

$$f(z) = \frac{1}{49}(z^3 - 1)^3, f'(2).$$

3. Найти производные функций при данном значении аргумента:

$$f(x) = \frac{6x}{\sqrt{x^2 + 1}}, f'(\sqrt{3}).$$

4. Найти острый угол между двумя данными параболами в точке их пересечения, имеющей положительную абсциссу.

$$y = x^2$$
 и $y = -x^2 + 6$.

5. Точка движется прямолинейно по данному закону $s = t^3 + 3t^2 - 3$, t = 2. Найти ускорение точки в данный момент времени (t в $ce\kappa$, s в M).

Вариант работы выбирается согласно номеру по списку классного журнала (последняя цифра)

Критерий оценки: за каждое правильно выполненное задание начисляется 1 балл.

Работа считается выполненной, если получено не менее 3 баллов.

2.2.2. Самостоятельная практическая работа № 2. Тема:

«Неопределепнный интеграл» - Варианты 1-10

Вариант – 1

- 1. Найти интеграл: $\int \frac{x^3 \sqrt[3]{x^2} + x^{-\frac{1}{2}}}{\sqrt{x}} dx.$
- 2. Найти интеграл: $\int \left(\frac{2}{\sqrt{9+4x^2}} e^{-x} \right) dx$.
- 3. Найти интеграл: $\int \frac{\cos 2x dx}{\cos^2 x}.$
- 4. Составить уравнение кривой, проходящей через данную точку $M\left(0;-1\right)$ и имеющей заданный угловой коэффициент $\frac{dy}{dx}=2x-3$ в любой точке касания.

5. Дано уравнение скорости прямолинейного движения точки $v = 3t^2 - 6t + 4$. Найти уравнение движения точки, если за время $t=2ce\kappa$ точка прошла путь s=8 м.

- 1. Найти интеграл: $\int \frac{\sqrt[3]{x^2} x^3 \sqrt{x}}{x\sqrt{x}} dx$.
- 2. Найти интеграл: $\int \left(\frac{3}{\sqrt{2-9x^2}} e^{-x} \right) dx.$
- 3. Найти интеграл: $\int (3\sin^2 x \cos x + \cos 3x) dx$.
- 4. Составить уравнение кривой, проходящей через данную точку М (2;-3) и имеющей заданный угловой коэффициент $\frac{dy}{dx} = 2x + 1$ в любой точке касания.
- 5. Дано уравнение скорости прямолинейного движения точки $v = 3t^2 + 4t 1$. Найти уравнение движения точки, если за время t=0 сек точка прошла путь s=0 м.

Вариант – 3

- 1. Найти интеграл: $\int \frac{\sqrt{x} \sqrt[3]{x^2} + x^{-\frac{1}{2}}}{x^{\frac{1}{2}}} dx.$
- 2. Найти интеграл: $\int \left(\frac{2}{\sqrt{4-3x^2}} + e^{-x} \right) dx.$
- 3. Найти интеграл: $\int \cos^3 x dx$.
- 4. Составить уравнение кривой, проходящей через данную точку M(1;-3) и имеющей заданный угловой коэффициент $\frac{dy}{dx} = 2x - 1$ в любой точке касания.
- 5. Дано уравнение скорости прямолинейного движения точки $v = 1 10t + 3t^2$. Найти уравнение движения точки, если за время t=0 сек точка прошла путь s=10 м.

Вариант – 4

- 1. Найти интеграл: $\int \frac{x^2 x\sqrt[3]{x} + \sqrt{x}}{x\sqrt{x}} dx.$
- $\int \left(\frac{1}{\sqrt{x^2-3}}-\frac{1}{e^x}\right)\!\!dx.$ 2. Найти интеграл:
- 3. Найти интеграл: $\int \frac{dx}{\sin x \cos x}.$
- 4. Составить уравнение кривой, проходящей через данную точку M (-1;-3) и имеющей

$$\frac{dy}{dx} = 2x + 1$$
в пюбой точке касания

 $\frac{dy}{dx} = 2x + 1$ в любой точке касания.

5. Дано уравнение скорости прямолинейного движения точки $v = 3t^2 - 8t - 2$. Найти уравнение движения точки, если за время t=2 сек точка прошла путь s=0 м.

Вариант – 5

1. Найти интеграл: $\int \frac{x\sqrt{x}-x^{-\frac{2}{3}}+x^2}{3\sqrt{x}}dx$.

2. Найти интеграл: $\int \left(\frac{1}{\sqrt{1-2x^2}} + e^{-x} \right) dx$.

3. Найти интеграл: $\int ctg^3xdx$.

4. Составить уравнение кривой, проходящей через данную точку M (-2;8) и имеющей заданный угловой коэффициент $\frac{dy}{dx} = 4x - 2$ в любой точке касания.

5. Дано уравнение скорости прямолинейного движения точки $v = 3t^2 - 4t - 4$. Найти уравнение движения точки, если за время t=2 сек точка прошла путь s=8 м.

Вариант – 6

1. Найти интеграл: $\int \frac{\sqrt[3]{x} + x^2 \sqrt{x} - \sqrt{x}}{\sqrt{x}} dx.$

2. Найти интеграл: $\int \left(\frac{2}{25x^2-16}-e^{-x}\right) dx$.

3. Найти функцию по данному ее дифференциалу $(\sin 2x - 6\cos^2 x \sin x) dx$, если эта функция принимает значение $m = \frac{3}{2}$ при $x = \frac{\pi}{2}$.

4. Составить уравнение кривой, проходящей через данную точку A(2;4) и имеющей заданный угловой коэффициент $\frac{dy}{dx} = 4x - 3$ в любой точке касания.

5. Дано уравнение ускорения прямолинейного движения точки a = 12t - 3. В момент времени t=2 сек точка имеет скорость v=20 м/сек и пройденный путь s=30 м. Найти путь, пройденный точкой за время n=4 сек.

$$\int \frac{x^2 \sqrt{x} + x^{-1} - \sqrt{x}}{x^{\frac{3}{2}}} dx.$$

1. Найти интеграл:

$$\int \left(\frac{1}{\sqrt{9+4x^2}} + e^{-x}\right) dx.$$

3. Найти функцию по данному ее дифференциалу $(\cos 2x - 6\sin^2 x\cos x)dx$, если эта

функция принимает значение m = 2 при $x = \frac{\pi}{2}$. 4. Составить укранический принимает значение m = 2 при $x = \frac{\pi}{2}$.

4. Составить уравнение кривой, проходящей через данную точку A(1;3) и имеющей

$$\frac{dy}{dx} = 6x - 1$$

 $\frac{dy}{dx} = 6x - 1$ в любой точке касания.

5. Дано уравнение ускорения прямолинейного движения точки a = 6t - 4. В момент времени t=3 сек точка имеет скорость v=18 м/сек и пройденный путь s=20 м. Найти путь, пройденный точкой за время n=5 сек.

Вариант – 8

- 1. Найти интеграл: $\int \frac{\sqrt[3]{x^2} + \sqrt{x} x}{x^2} dx.$
- 2. Найти интеграл: $\int \left(\frac{1}{3x^2 25} e^{-x} \right) dx.$
- 3. Найти функцию по данному ее дифференциалу $(\cos 2x 6\cos^2 x \sin x)dx$, если эта функция принимает значение m = 2 при $x = \pi$.
- 4. Составить уравнение кривой, проходящей через данную точку A(-2;9) и имеющей

 $\frac{dy}{dx} = 6x + 4$ в любой точке касания.

5. Дано уравнение ускорения прямолинейного движения точки a = 3t + 4. В момент времени t=2 сек точка имеет скорость v=22 м/сек и пройденный путь s=32 м. Найти путь, пройденный точкой за время n=4 сек.

Вариант – 9

- 1. Найти интеграл: $\int \frac{x\sqrt[3]{x} + x^2\sqrt{x} + \sqrt{x}}{\sqrt{x}} dx.$
- 2. Найти интеграл: $\int \left(\frac{x}{\sqrt{5 \Omega x^2}} + e^{-x} \right) dx.$
- 3. Найти функцию по данному ее дифференциалу $(\sin 2x 6\sin^2 x \cos x) dx$, если эта функция принимает значение $m = \frac{1}{2}$ при $x = \frac{\pi}{6}$.
- 4. Составить уравнение кривой, проходящей через данную точку А(-1;4) и имеющей заданный угловой коэффициент $\frac{dy}{dx} = 2x + 2$ в любой точке касания.
- 5. Дано уравнение ускорения прямолинейного движения точки a = 6t 3. В момент времени t=4 сек точка имеет скорость v=40 м/сек и пройденный путь s=20 м. Найти путь, пройденный точкой за время n=6 сек.

Вариант – 10

- 1. Найти интеграл: $\int \frac{x^2 \sqrt{x} + \sqrt[3]{x} + x}{x^2} dx.$
- 2. Найти интеграл: $\int \left(\frac{3x}{9x^2-4}-e^{-x}\right) dx.$
- 3. Найти функцию по данному ее дифференциалу $(\cos 2x 6\cos^2 x \sin x) dx$, если эта функция принимает значение m = -3 при x = 0.

- 4. Составить уравнение кривой, проходящей через данную точку A(2;4) и имеющей заданный угловой коэффициент $\frac{dy}{dx} = 2x 2$ в любой точке касания.
- 5. Дано уравнение ускорения прямолинейного движения точки a=6t+12. В момент времени t=2 сек точка имеет скорость v=38 м/сек и пройденный путь s=30 м. Найти путь, пройденный точкой за время n=3 сек.

Вариант задания выбирается согласно номеру по списку классного журнала (последняя цифра)

Критерий оценки: за каждое правильно выполненное задание начисляется 1 балл.

Работа считается зачтенной, если получено не менее 3 баллов.

2.2.3. Самостоятельная практическая работа № 3. Тема «Частные производные» - время на выполнение 20 мин.

Задание 1: 1-10. Найти частные производные $\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}$ функции z = f(x;y)

1.
$$z = arctg \frac{y}{x}$$

2. $z = y \cdot e^{x^2 y}$
3. $z = \frac{x^2 y}{x + 2y}$
4. $z = x \cdot \cos(xy)$
5. $z = x \cdot e^{x^2 y}$
6. $z = \ln(4x^2 + 5y^2)$
7. $z = e^{xy}(2x - y)$
8. $z = \sqrt{2x^2 - 5y^2}$
9. $z = x \cdot \ln(x + 3y)$
1. 0. $z = \sqrt[3]{3y^2 + 6x^2}$

Вариант задания выбирается согласно номеру по списку классного журнала (последняя цифра)

Критерий оценки: за правильно выполненное задание начисляется 1 балл.

Работа считается зачтенной.

2.2.4. Самостоятельная практическая работа № 5. Тема «Вычисление определенных интегралов, геометрические приложения определенного интеграла» - время на выполнение 45 мин.

Задание 1: 1-10. Вычислить площадь плоской фигуры, ограниченной указанными линиями. Сделать чертеж.

1.
$$xy = 4$$
, $y = 0$, $x = 4$

6.
$$y^2 = x$$
, $y = x^2$

2.
$$x^2 + y^2 = 8$$
, $y = \frac{x^2}{2}$, $x = 0$

7.
$$y = 4 - x^2$$
, $y = x^2 - 2x$

3.
$$4y = 8x - x^2$$
, $4y = x + 6$

8.
$$4y = 8x - x^2$$
, $4y = x + 6$

4.
$$x^2 + y^2 = 8$$
, $y = \frac{x^2}{2}$, $x = 0$

9.
$$y = x^2$$
, $y = \frac{x^3}{3}$, $x = 1$

5.
$$y = -x$$
, $y = 2x - x^2$

1 0.
$$x^2 + y^2 = 16$$
, $y^2 = 6x$

Задание 2: 1- 10. Вычислить объем тела, образованного вращением вокруг оси Ox фигуры, ограниченной данными линиями.

- 1. Параболой $y = \frac{x^2}{4}$, прямой x = 4 и осью Ox.
- 2. Полуэллипсом $y = 3\sqrt{1 x^2}$, параболой $x = \sqrt{1 y}$ и осью Oy.
- 3.Параболой $y = \frac{x^2}{6} + 1$ и прямыми y = 0, x = 0, x = 3.
- 4. Параболами $y = x^2$ и $y = \sqrt{x}$.
- 5. Гиперболой $y = \frac{1}{x}$, и прямыми x = 1, x = 3, y = 0.
- 6. Осью Ох и параболой $y = 2x x^2$.
- 7. Параболой $y = 4x x^2$ и прямыми y = 0, x = 0, x = 3.
- 8. Линиями $y = \sqrt{x}, y = 0, x = 4.$
- 9. Параболой $y = 4 x^2$ и осью Ox.
- 10. Параболой $y = x^2 2x$ и осью Ox.

Вариант задания выбирается согласно номеру по списку классного журнала (последняя цифра)

Критерий оценки: за правильно выполненное задание начисляется 1 балл.

Работа считается зачтенной, если набрано 2 балла.

2.2.5. Самостоятельная практическая работа № 5. Тема «Комплексные числа: их алгебраическая и тригонометрическая формы» - время на выполнение 20 мин.

Задание 1: 61-70. Дано комплексное число Z . Записать число Z в алгебраической и тригонометрической формах.

61.
$$z = \frac{4}{1 + i\sqrt{3}}$$

66.
$$z = \frac{2\sqrt{2}}{1+i}$$

62.
$$z = \frac{4}{1 - i\sqrt{3}}$$

67.
$$z = \frac{2\sqrt{2}}{1-i}$$

63.
$$z = \frac{4}{\sqrt{3} - i}$$

68.
$$z = \frac{2\sqrt{2}}{i-1}$$

64.
$$z = \frac{4}{\sqrt{3} + i}$$

69.
$$z = \frac{2\sqrt{2}}{1+i}$$

65.
$$z = \frac{-4}{\sqrt{3} + i}$$

70.
$$z = \frac{1}{i - \sqrt{3}}$$

Вариант задания выбирается согласно номеру по списку классного журнала (последняя цифра)

Критерий оценки: за правильно выполненное задание начисляется 1 балл.

Работа считается зачтенной.

2.2.6. Самостоятельная практическая работа № 6. Тема «Решение дифференциальных уравнений» - время на выполнение 90 мин.

Задание 1: 1-10. Найти общее решение дифференциального уравнения первого порядка.

1. a)
$$(xy^2 + x)dx + (x^2y - y)dy = 0$$

$$\hat{a}$$
) $x^2 y' = 2xy + 3$

2. a)
$$y'\cos x = \frac{y}{\ln y}$$

$$\hat{a}$$
) $y' - 2ytgx = \sin x$

3. *a*)
$$xy'+y-3=0$$

$$\hat{a}$$
) $y' + y = \cos x$

4. *a*)
$$y'\cos x = (y+1)\cdot \sin x$$

$$\hat{a}$$
) $y' + 2y = 4x$

5. *a*)
$$(1-x^2)y' = xy$$

$$\hat{a}) \ y' - y = e^x$$

6. a)
$$\sqrt{y^2 + 2} \cdot x \, dx + y (1 + x^2) \, dy = 0$$

$$\hat{a}$$
) $y' - yctgx = \sin x$

7. *a*)
$$y' = (2y + 1) ctg x$$

$$\hat{a}) \ y'x + 2y = x^3$$

8. a)
$$\sqrt{y^2 + 1} dx - xy dy = 0$$

$$\hat{a}) \cos x \cdot y' - y \sin x = x e^{-x^2}$$

9. *a*)
$$y'-xy^2 = 2xy$$

$$\hat{a}$$
) $y' + 2xy = xe^{-x^2}$

1 0. a)
$$(1+x^2)y' = x\sin^2 y$$

$$\hat{a}$$
) $y' - 4y = e^{4x}$

Задание 2: 1-10. Найти общее решение дифференциального уравнения второго порядка, допускающего понижение порядка

$$1. \ a) \ y'' = x \sin x$$

$$(a) xy'' + y' - x - 1 = 0$$

2. a)
$$y'' = \frac{60}{x^7}$$

$$a) y'' + y'tgx = \sin 2x$$

3. *a*)
$$y'' = \frac{1}{x}$$

$$\dot{a}) xy'' = y' \ln \frac{y'}{x}$$

4. *à*)
$$y'' = \cos^2 x$$

5.
$$a) y'' = \frac{2}{x^5}$$

$$6. a) y'' = 4\cos 2x$$

$$\cos 2x \qquad \qquad \acute{a}) \ \ y'' = \frac{y'}{x} + x$$

7. *à*)
$$y'' = e^{2x}$$

$$a) x^3y'' + x^2y' = 1$$

á) 2xy'' = y'

 $(a) xv'' = 1 + x^2$

8. *à*)
$$y'' = \frac{2}{x^5}$$

$$\acute{a}) xy'' - y' = x^2 e^x$$

9. *à*)
$$y'' = \sin^2 x$$

$$(a) \quad v'' = x \ln x \cdot v'$$

1 0. *à*)
$$v'' = \ln x$$

$$a) y'' + y'tgx = \sin 2x$$

Задание 3: 1-10. Решить задачу Коши

1.
$$y'' + 6y' + 13y = 0$$
 $y(0) = 1$, $y'(0) = 1$

2.
$$4y'' + 4y' + y = 0$$
 $y(0) = 2$, $y'(0) = 0$

3.
$$y'' - 4y' + 2y = 0$$
 $y(0) = 3$, $y'(0) = -1$

4.
$$y'' - 5y' + 6y = 0$$
 $y(0) = 4$, $y'(0) = 0$

5.
$$y'' + 3y' = 0$$
 $y(0) = 3$, $y'(0) = 0$

6.
$$y'' - 2y' - y = 0$$
 $y(0) = 5$, $y'(0) = 2$

7.
$$y'' + 9y = 0$$
 $y(0) = 2$, $y'(0) = 0$

8.
$$4y'' - 8y' + 5y = 0$$
 $y(0) = 4$, $y'(0) = 2$

9.
$$y'' - 4y' = 0$$
 $y(0) = 1$, $y'(0) = 2$

10.
$$y'' - 4y' + 3y = 0$$
 $y(0) = 6$, $y'(0) = 1$

Вариант работы выбирается согласно номеру по списку классного журнала (последняя цифра)

Критерий оценки: за каждое правильно выполненное задание начисляется 1 балл. Работа считается зачтенной, если получено не менее 3 баллов.

2.2.7. Самостоятельная практическая работа № 7. Тема: «Векторы и действия над ними» - время на выполнение 90 мин.

Задание 1: вариант 1-10

Вариант 1

- 1. Найти полярные координаты точки $M(2\sqrt{3}; 2)$.
- 2. Найти скалярное произведение векторов $\vec{a} = 5\vec{i} + 4\vec{j} 6\vec{k}$ и $\vec{b} = 4\vec{i} 3\vec{j} 2\vec{k}$.
- 3. Найти периметр треугольника, заданного своими вершинами А(-1; 2; 0),

- B(-2; -2; 1), C(3; 2; -1).
- 4. Вычислить площадь треугольника, заданного вершинами A(2; 2; 2), B(4; 0; 3), C(0; 1; 0).
- 5. Показать, что точки A(5; 7; -2), B(3; 1; -1), C(9; 4; -4) и D(1; 5; 0) лежат в одной плоскости.

Вариант 2

- 1. Найти декартовые координаты точки A (10; $\frac{\pi}{2}$).
- 2. Даны векторы $\vec{a}=4\vec{i}-m\vec{j}+6\vec{k}$ и $\vec{b}=5\vec{i}+4\vec{j}-m\vec{k}$. При каком значении m эти векторы будут перпендикулярны.
- 3. Определить угол между векторами $\vec{a} = \{-1; -2; 3\}$ и $b = \{6; 4; -2\}$.
- 4. Вычислить площадь параллелограмма, построенного на векторах $(\vec{a}+3\vec{b})$ и $(3\vec{a}+\vec{b})$, если |a|=|b|=1, а угол между ними составляет 30^{0} .
- 5. Найти смешанное произведение векторов $\vec{a}=2\vec{i}-\vec{j}-\vec{k}$, $\vec{b}=\vec{i}+3\vec{j}-\vec{k}$ и $\vec{c}=\vec{i}+\vec{j}+4\vec{k}$.

Вариант 3

- 1. Найти полярные координаты точки $M\,(\,-\,\sqrt{2}\,\,;\,-\,\sqrt{6}\,).$
- 2. Найти $(\vec{a} + 3\vec{b}) \cdot (2\vec{a} \vec{b})$, если $|\vec{a}| = 2$, $|\vec{b}| = 1$ и $\vec{a} \perp \vec{b}$.
- 3. Найти координаты векторного произведения $\vec{a}=2\vec{i}+5\vec{j}+\vec{k}$ и $\vec{b}=\vec{i}+2\vec{j}-3\vec{k}$.
- 4. Вычислить площадь треугольника, заданного вершинами A(-1; 4; 3), B(1; 0; 2), C(-6; 2; 4).
- 5. Найти объем параллелепипеда, построенного на векторах $\vec{a}=\{1;-1;1\},\ \vec{b}=\{1;1;1\}$ и $\vec{c}=\{2;3;4\}$.

Вариант 4

- 1. Найти декартовые координаты точки A (4; $\frac{\pi}{4}$).
- 2. Даны векторы $\vec{a} = m\vec{i} + 3\vec{j} 2\vec{k}$ и $\vec{b} = \vec{i} 5\vec{j} + m\vec{k}$. При каком значении m эти векторы будут перпендикулярны.
- 3. Вершины треугольника заданы координатами: A (1; 2; -3), B (0; 1; 2), C (2; -1; 1). Найти длины сторон |AB| и |AC|, угол при вершине A.
- 4. Вычислить площадь параллелограмма, построенного на векторах $(3\vec{a}-\vec{b})$ и $(\vec{a}+2\vec{b})$, если $|\vec{a}|=2$, $|\vec{b}|=3$, а угол между ними составляет 60^{0} .
- 5. Найти произведение векторов $(\vec{a} + \vec{b})(\vec{b} \vec{c})(\vec{c} + \vec{a})$.

Вариант 5

1. Найти полярные координаты точки $A(\sqrt{2}; -\sqrt{2})$.

- 2. Найти скалярное произведение векторов $(\vec{a}-2\vec{b})\cdot(5\vec{a}+\vec{b})$, если $|\vec{a}|=2$, $|\vec{b}|=1$, а угол между ними составляет $\frac{\pi}{3}$.
- 3. Найти площадь треугольника ABC, заданного вершинами: *A* (-1; 4; 3), *B* (1; 0; 2), *C* (-6; 2; 4).
- 4. Найти объем треугольной пирамиды, заданной вершинами: *A (-2; -2; -2), B (4; 3; -3), C (4; 5; -4), D (-5; 5; 6).*
- 5. Доказать, что векторы $\vec{a}=7\vec{i}-3\vec{j}+2\vec{k}$, $\vec{b}=3\vec{i}-7\vec{j}+8\vec{k}$ и $\vec{c}=\vec{i}-\vec{j}+\vec{k}$ компланарны.

Вариант 6

- 1. Найти декартовые координаты точки $A(2; -\frac{\pi}{4})$.
- 2. Даны векторы $\vec{a} = 3\vec{i} + 4\vec{j} m\vec{k}$ и $\vec{b} = 5\vec{i} m\vec{j} + \vec{k}$. При каком значении m эти векторы будут перпендикулярны.
- 3. Векторы \vec{a} и \vec{b} имеют длину соответственно 80 см и 50 см и образуют угол в 30° . Найти длину векторного произведения, приняв за единицу длины \underline{I} м.
- 4. Найти периметр треугольника, заданного вершинами A(0; -2; 0), B(-2; -1; 2), C(2; -2; -1).
- 5. Найти произведение векторов $(\vec{i} \vec{j})(\vec{j} + \vec{k})(\vec{k} \vec{i})$.

Вариант 7

- 1. Найти полярные координаты точки $M(2\sqrt{3}; -2)$.
- 2. Найти скалярное произведение векторов $\vec{a} = 5\vec{i} + 4\vec{j} 6\vec{k}$ и $\vec{b} = 4\vec{i} 3\vec{j} 2\vec{k}$.
- 3. Найти периметр треугольника, заданного своими вершинами A(-2; 2; 0), B(-1; -1; 1), C(3; 0; -1).
- 4. Вычислить площадь треугольника, заданного вершинами A(2; 2; 2), B(4; 3; 3), C(0; 1; 0).
- 5. Показать, что точки A(5; 7; -2), B(3; 1; -1), C(9; 4; -4) и D(1; 5; 0) лежат в одной плоскости.

Вариант 8

- 1. Найти декартовые координаты точки A (5; $\frac{\pi}{2}$).
- 2. Даны векторы $\vec{a} = 4\vec{i} m\vec{j} + 6\vec{k}$ и $\vec{b} = 5\vec{i} + 4\vec{j} m\vec{k}$. При каком значении m эти векторы будут перпендикулярны.
- 3. Определить угол между векторами $\vec{a} = \{-1; -2; 3\}$ и $b = \{6; 4; -2\}$.
- 4. Вычислить площадь параллелограмма, построенного на векторах $(\vec{a}+3\vec{b})$ и $(3\vec{a}+\vec{b})$, если |a|=|b|=1, а угол между ними составляет 120^{0} .

5. Найти смешанное произведение векторов $\vec{a}=2\vec{i}-\vec{j}-\vec{k}$, $\vec{b}=\vec{i}+3\vec{j}-\vec{k}$ и $\vec{c}=\vec{i}+\vec{j}+4\vec{k}$.

Вариант 9

- 1. Найти полярные координаты точки $M(-\sqrt{2}\;;\;-\sqrt{6}\;)$.
- 2. Найти $(\vec{a}+3\vec{b})\cdot(2\vec{a}-\vec{b})$, если $|\vec{a}|=2$, $|\vec{b}|=1$ и $\vec{a}\perp\vec{b}$.
- 3. Найти координаты векторного произведения $\vec{a}=2\vec{i}+5\vec{j}+\vec{k}$ и $\vec{b}=\vec{i}+2\vec{j}-3\vec{k}$.
- 4. Вычислить площадь треугольника, заданного вершинами A(-1; 4; 3), B(1; 0; 2), C(-6; 2; 4).
- 5. Найти объем параллелепипеда, построенного на векторах $\vec{a} = \{1;-1;1\}$, $\vec{b} = \{1;1;1\}$ и $\vec{c} = \{2;3;4\}$.

Вариант 10

- 1. Найти декартовые координаты точки A (2; $\frac{\pi}{4}$).
- 2. Даны векторы $\vec{a} = m\vec{i} + 3\vec{j} 2\vec{k}$ и $\vec{b} = \vec{i} 5\vec{j} + m\vec{k}$. При каком значении m эти векторы будут перпендикулярны.
- 3. Вершины треугольника заданы координатами: A(1; 4; -3), B(-2; 1; 2), C(0; -1; 1). Найти длины сторон |AB| и |AC|, угол при вершине A.
- 4. Вычислить площадь параллелограмма, построенного на векторах $(3\vec{a} \vec{b})$ и $(\vec{a} + 2\vec{b})$, если $|\vec{a}| = 2$, $|\vec{b}| = 3$, а угол между ними составляет 150^{0} .
- 5. Найти произведение векторов $(\vec{a} + \vec{b})(\vec{b} \vec{c})(\vec{c} + \vec{a})$.

Вариант работы выбирается согласно номеру по списку классного журнала (последняя инфра)

Критерий оценки: за каждое правильно выполненное задание начисляется 1 балл. Работа считается зачтенной, если получено не менее 3 баллов.

2.2.7. Самостоятельная практическая работа № **8.** Тема: «Решение систем уравнений» - время на выполнение 20 мин.

Задание 1: вариант 1-10 Решить данную систему методом Крамера.

$$\begin{cases}
3x_1 + 4x_2 + 2x_3 &= 8, \\
2x_1 - 4x_2 - 3x_3 &= -1, \\
x_1 + 5x_2 + x_3 &= 0;
\end{cases}$$

$$\begin{cases}
2x_1 + 3x_2 + x_3 &= 3, \\
-x_1 + x_2 &= 2, \\
x_1 + 2x_2 - x_3 &= -1.
\end{cases}$$

$$\begin{cases}
 x_1 + x_2 + 2x_3 = -1, \\
 2x_1 - x_2 + 2x_3 = -4, \\
 4x_1 + x_2 + 4x_3 = -2;
\end{cases}$$

$$7. \begin{cases} 2x_1 + x_2 + 3x_3 = 6, \\ 3x_1 - 5x_2 + x_3 = -1, \\ 4x_1 - 7x_2 + x_3 = -2; \end{cases}$$

$$\begin{cases} x_1 + x_2 + 2x_3 = -1, \\ 2x_1 - x_2 + 2x_3 = -4, \\ 4x_1 + x_2 + 4x_3 = -2; \end{cases}$$

$$\begin{cases} 3x_1 - 2x_2 + x_3 = 2, \\ 2x_1 + x_2 + 2x_3 = 5, \\ 3x_1 - x_2 - 2x_3 = 0; \end{cases}$$

$$\begin{cases} 3x_1 - 2x_2 + x_3 = 2, \\ 2x_1 + x_2 + 2x_3 = 5, \\ 3x_1 - x_2 - 2x_3 = 0; \end{cases}$$

$$\begin{cases} -x_1 + 2x_2 + x_3 = 0, \\ x_1 - 2x_2 + 3x_3 = 3, \\ 2x_1 + x_2 - x_3 = 1. \end{cases}$$

$$\begin{cases} 2x_1 + 5x_2 - 8x_3 = 8, \\ 4x_1 + 3x_2 - 9x_3 = 9, \\ x_1 + 8x_2 - 7x_3 = 12; \end{cases}$$

$$\begin{cases} 5x_1 + 8x_2 - x_3 = 7, \\ 2x_1 - 3x_2 + 2x_3 = 9, \\ x_1 + 2x_2 + 3x_3 = 1; \end{cases}$$

$$\begin{cases} 10. \end{cases}$$

Вариант задания выбирается согласно номеру по списку классного журнала (последняя цифра)

Критерий оценки: за правильно выполненное задание начисляется 1 балл.

Работа считается зачтенной.

2.3. Текущий контроль в форме опроса

Форма текущего контроля «Опрос» предполагает устный опрос по основным вопросам тем. Устный контроль осуществляется в индивидуальной и фронтальной формах. Обучающимся предлагается ответить на 1 вопрос.

Цель устного индивидуального контроля — выявление знаний, умений и навыков отдельных обучающихся. Дополнительные вопросы при индивидуальном контроле задаются при неполном ответе, если необходимо уточнить детали, проверить глубину знаний или же если у преподавателя возникают проблемы при выставлении отметки.

Устный фронтальный контроль (опрос) — требует серии логически связанных между собой вопросов по небольшому объему материала. При фронтальном опросе от обучающихся преподаватель ждет кратких, лаконичных ответов с места. Обычно он применяется с целью повторения и закрепления учебного материала за короткий промежуток времени.

Критерии оценивания устного опроса:

- оценка «отлично» ставится в том случае, если ответ логически структурирован, содержит полное раскрытие содержания вопроса;
- оценка «хорошо» ставится в том случае, если ответ содержит недостаточно полное раскрытие теоретических вопросов;
- оценка «удовлетворительно» ставится в том случае, если ответ содержит поверхностное изложение сути поставленного вопроса;
- оценка «неудовлетворительно» ставится в том случае, если студент не может дать ответ на поставленные вопрос.

2.4. Аттестационный текущий контроль успеваемости (ежемесячный)

При проведении ежемесячного аттестационного контроля успеваемости учитываются следующие результаты текущих форм контроля изучения дисциплины:

- 1. Результаты выполнения практических работ за месяц.
- 2. Результаты устного индивидуального опроса.
- 3. Результаты устного фронтального опроса.

3. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

3.1 Задания для проведения промежуточной аттестации

Задание включает в себя выполненные в течение семестра практические работы и теоретический вопрос.

Вопросы для подготовки

- 1. Склярное произведение векторов. Свойства склярного произведения.
- 2. Склярное произведение основных векторов. Выражение склярного произведения через координаты сомножителей. Длина вектора.
- 3. Векторное произведение основных векторов. Выражение векторного произведения через координаты сомножителей.
- 4. Векторное произведение векторов. Свойства векторного произведения.
- 5. Определители III порядка: их свойства и следствия из них.
- 6. Смешаное произведение векторов и его геометрический смысл. Свойства смешанного произведения.
- 7. Выражение смешаного произведения через координаты сомножителей. Объем параллелепипеда.
- 8. Коллинеарные и компланарные векторы. Признаки параллельности, перпендикулярности и компланарности векторов.
- 9. Производная и дифференциал функции (определение и свойства). Линейная и степенная функции. Формулы дифференцирования.
- 10. Производная и дифференциал функции (определение и свойства). Логарифмическая и показательные функции. Формулы дифференцирования.
- 11. Производная и дифференциал функции (определение и свойства). Тригонометрические и обратные тригонометрические функции. Формулы дифференцирования.
- 12. Производная и дифференциал произведения и частного (дроби). Производная сложной функции. Производные высших порядков.
- 13. Приложение производной: уравнение касательной и нормали к кривой.
- 14. Геометрический смысл производной и дифференциала.
- 15. Функции нескольких аргументов. Частная производная.
- 16. Понятие первообразной и неопределенного интеграла. Теорема о множестве первообразных.
- 17. Свойства неопределенного интеграла.
- 18. Декартовая и полярная системы координат. Связь между полярными и декартовыми координатами.
- 19. Методы интегрирования: замена переменной в неопределенном интеграле и интегрирование по частям.
- 20. Понятие интегральной суммы и определенного интеграла. Геометрический смысл определенного интеграла.
- 21. Свойства определенного интеграла, выраженные с помощью равенств.
- 22. Свойства определенного интеграла, выраженные с помощью неравенств.
- 23. Теорема о среднем.

- 24. Формула Ньютона Лейбница.
- 25. Замена переменной в неопределенном и определенном интегралах.
- 26. Интегрирование по частям: неопределенный и определенный интеграл.
- 27. Определение дифференциального уравнения. Задача Коши.
- 28. Комплексные числа и их геометрическая интерпретация, действия над комплексными числами.

3.2. Критерии оценки дифференцированного зачета за семестр.

Балл	Критерии	
«5»	Оценка «5» ставится, если обучающийся:	
(отлично)	- самостоятельно, тщательно и аккуратно выполняет практическое задание;	
	- ошибок не делает, но допускает незначительные неточности и описки; - на теоретический вопрос дает правильный четкий ответ.	
«4» (хорошо)	Оценка «4» ставится, если обучающийся: - самостоятельно, сравнительно аккуратно, но с небольшими затруднениями выполняет практическое задание; - на теоретический вопрос дает ответ с небольшими неточностями.	
«3» (удовлетворительно)	Оценка «3» ставится, если обучающийся: - практическое задание выполняет с ошибками, но основные правила соблюдает; - теоретический вопрос раскрыт не полностью.	
«2» (неудовлетворительно)	Оценка «2» ставится, если обучающийся: - не выполнил практическое задание; - на теоретический вопрос дан неверный ответ.	

Перечень ошибок:

Ошибка считается грубой, если обучающийся:

- 1. Не знает основных понятий математики.
- 2. Не знает законы, методы и приемы решения практических задач.
- 3. Не знает правил оформления практических заданий.

К негрубым ошибкам относятся:

- 1. Неточности формулировок, определений, понятий, теории, вызванные неполнотой охвата основных признаков определяемого понятия.
 - 2. Не совсем подробное выполнение практического задания.

Недочетами считаются:

1. Отдельные погрешности в формулировке вопроса или ответа.

Пакет для дифференцированного зачета

- ведомость учебной группы с отметками о выполнении практических работ;
- журнал учебной группы.